І. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

1. Качественные задачи

- 1. Дайте определение понятия «система». Система закрытая, открытая, изолированная, адиабатная, гомогенная, гетерогенная.
 - 2. Понятия теплоты, работы и внутренней энергии.
 - 3. Понятия функции состояния и функции процесса. Приведите примеры.
- 4. Система участвовала в сложном физико-химическом процессе. В каком случае можно утверждать, что суммарная работа, совершенная над системой, будет эквивалентна выделившейся теплоте?
- 5. Изохорная и изобарная теплоемкости и связь между ними. Зависимость изобарной теплоемкости чистого вещества от температуры.
 - б. Уравнения состояния (идеальный газ, реальный газ).
 - 7. Приведите формулировки первого начала термодинамики.
- 8. Запишите математическую формулировку первого начала термодинамики в дифференциальной и интегральной формах.
 - 9. Частные случаи первого начала термодинамики. Энтальпия.
- 10. Чему равно изменение внутренней энергии и энтальпии в изолированной системе?
- 11. Стандартная энтальпия образования жидкого бензола C_6H_6 при 298 К равна 49,04 кДж/моль. Напишите уравнение реакции, к которой относится эта величина.
- 12. Стандартная энтальпия образования кристаллического фенола C_6H_5OH при 298 К равна -162,8 кДж/моль. Напишите уравнение реакции, к которой относится эта величина.
- 13. Стандартная энтальпия образования газообразного метиламина CH₃NH₂ при 298 К равна -28,03 кДж/моль. Напишите уравнение реакции, к которой относится эта величина.
- 14. Стандартная энтальпия образования газообразного хлористого метила CH₃Cl при 298 К равна -82,0 кДж/моль. Напишите уравнение реакции, к которой относится эта величина.
- 15. Стандартная энтальпия образования жидкого нитробензола С₆Н₅NO₂ при 298 К равна 11,2 кДж/моль. Напишите уравнение реакции, к которой относится эта величина.
- 16. Энтальпия сгорания метилового спирта при стандартных условиях равна -726,64 кДж/моль. Напишите уравнение реакции, к которой относится эта величина.
- 17-29. Напишите уравнения реакций для нижеперечисленных веществ, тепловой эффект которых принят за стандартную энтальнию сторания, и укажите условия проведения этих реакций. Конечные продукты сторания: $CO_{2(r)}$, $H_2O_{(x)}$, $HCI_{(r)}$, $O_{2(r)}$, $N_{2(r)}$.
 - 17. Этиловый спирт С₂Н₅ОН.

- 18. Уксусная кислота CH₃COOH.
- 19. Четыреххлюристый углерод ССІ4.
- 20. Сероуглерод CS₂.
 - 21) Ацетон СН₃СОСН₃.
 - 22. Ацетонитрил CH₃CN.
 - 23. Нитробензол C₆H₅NO₂.
 - 24. Хлороформ СНСІ3.
 - 25. Глицерин C₃H₈O₃.
 - 26. Фенол С₆Н₆О.
 - 27. Гидрохинон $C_6H_6O_2$.
 - 28. Анилин C₆H₇N.
 - 29. Бутанол С₄Н₁₀О.
- 30. Какова связь между энтальпией и внутренней энергией химической реакции? В каких случаях можно пренебречь разницей между энтальпией и впутренней энергией реакции?

2. Вычисление работы, теплоты, изменения энтальпии и внутренней энергии в различных процессах

- 1. Один моль идеального газа можно перевести из первого состояния $(P_1 = 4 \cdot 10^5 \, \text{H/m}^2, \ V_1 = 3 \, \text{м}^3)$ во второе $(P_2 = 2 \cdot 10^5 \, \text{H/m}^2, \ V_2 = 1 \, \text{м}^3)$ двумя различными путями. Первый путь: переход совершался сначала по изобаре, потом по изохоре; второй путь: сначала по изохоре, потом по изобаре. Вычислите, при каком переходе выделится большее количество теплоты.
- 2. Азот в количестве 7 кг, находящийся при температуре 218,15 К, изотермически расширяется от объема 20 м³ до объема 60 м³. Считая газ идеальным, вычислите работу газа при расширении. Требуется ли тепло для проведения такого процесса?
- 3. Двуокись углерода в количестве $440 \, \text{г}$, находящаяся при температуре $273,15 \, \text{K}$ и давлении $1,013 \cdot 10^5 \, \text{H/m}^2$, изохорически нагревается до давления $2,026 \cdot 10^5 \, \text{H/m}^2$. Считая CO_2 идеальным газом с мольной изобарной теплоемкостью, равной $37,1 \, \text{Дж/(моль·K)}$, вычислите количество теплоты, работу, изменение внутренней энергии и изменение энтальпии в этом процессе.
- 4. Какое количество теплоты выделится при изотермическом сжатии 0.1 м^3 идеального газа, взятого при температуре 600 K и давлении $1.013 \cdot 10^5 \text{ H/m}^2$, если его объем уменьшится до 0.01 m^3 ?
- 5. Используя зависимость мольной изобарной теплоемкости CO_2 от температуры $c_p = 44,14 + 9,04 \cdot 10^{-3} T 8,53 \cdot 10^5 T^2$, Дж/(моль·К), вычислите количество теплоты, необходимое для нагревания 220 г этого газа от 300 до 500 К при постоянном давлении и при постоянном объеме. Газ считать идеальным.
- 6. Вычислите изменение температуры и конечнос давление при обратимом адиабатическом сжатии 1 моля гелия от объема 44,8 л до 22,4 л. Начальная температура газа 273,15 К. Газ считать идеальным с мольной изохорной теплосмкостью 12,55 Дж/(моль-К).

- 7. При температуре 300 К двухатомный идеальный газ изотермически обратимо расниряется от 0,01 м³ до 0,1 м³, при этом поглощается 17,0 к/дж теплоты. Вычислите количество молей газа, участвующего в этом процессе.
- 8. Один моль одноатомного идеального газа переводится из состояния, характеризуемого параметрами: $P_1 = 2 \cdot 10^5 \, \text{Па}$, $V_1 = 22.4 \, \text{л}$, $T_1 = 596.3 \, \text{K}$, в состояние, характеризуемое параметрами: $P_2 = 2 \cdot 10^5 \, \text{Па}$, $V_2 = 12.2 \, \text{л}$, $T_2 = 298.15 \, \text{K}$. Вычислите работу, количество теплоты, изменения внутренней энергии и энтальпии в этом процессе.
- 9. Вычислите изменение внутренней энергии при испарении 100 г этапола при температуре его кипения и нормальном атмосферном давлении. Удельная теплота парообразования этанола при этих условиях равна 858,95 Дж/г, удельный объем пара 607 см³/г. При расчете объемом жидкости можно пренебречь.
- 10. Покажите, как отличается тепловой эффект реакции образования 2 молей водяного пара из водорода и кислорода при постоянных давлении и температуре от теплового эффекта той же реакции, но происходящей без совершения объемной работы (в сосуде с жесткой оболочкой).
- 11. Пять молей одноатомного и три моля двухатомного идеальных газов адиабатически расширяются, при этом температура того и другого газа изменяется на одинаковую величину. Для какого из газов работа расширения будет больше?
- 12. Двуокись углерода в количестве 220 г находится при температуре 273,15 К и давлении 1,013-10⁵ Па. Считая СО₂ идеальным газом с мольной изобарной теплоемкостью, равной 37,1 Дж/(моль-К), вычислите количество теплоты, работу, изменение внутренней энергии и изменение энтальпии при изотермическом расширении газа до объема 0,5 м³.
- 13. Десять молей одноатомного и три моля двухатомного идеальных газов адиабатически расширяются, при этом температура одноатомного газа изменяется на 25°, а двухатомного на 50°. Для какого из газов работа расширения будет больше?
- 14. Определите, чему равен адиабатический коэффициент у для газового раствора, состоящего из 5 молей гелия и 4 молей азота. Газ считать идеальным.
- 15. Двухатомный идеальный газ, занимающий объем 1 м³ при температуре 300 К и давлении 0,565·10⁵ Н/м², при изобарическом нагревании расширяется до объема 2 м³. Вычислите работу газа при таком расширении, теплоту, поглощенную газом, и изменение его внутренней энергии.

3. Закон Гесса

1. Используя стандартные тепловые эффекты ΔH^0_{291} следующих реакций: Fe $_{(79)}$ + 2HCl $_{(p-p)}$ \rightarrow FeCl_{2 $_{(p-p)}$} + H_{2 $_{(r)}$} – 85,0 кДж, FeCl_{2 $_{(79)}$} \rightarrow FeCl_{2 $_{(p-p)}$} – 81,3 кДж, HCl $_{(r)}$ \rightarrow HCl $_{(p-p)}$ – 68,0 кДж, H_{2 $_{(r)}$} + Cl_{2 $_{(r)}$} \rightarrow 2HCl $_{(r)}$ – 178,0 кДж,

вычислите для процесса образования $FeCl_{2(re)}$ стандартную энтальпию образования при 291 K, изменение внутренней энергии при образовании $FeCl_2$ при 291 K.

2. Вычислите стандартную энтальнию образования оксида железа $Fe_2O_{3 (\kappa p)}$ из простых веществ при 298 K, используя следующие реакции:

 $2\text{Fe}_{(a)} + O_{2(r)} \rightarrow 2\text{FeO}_{(\kappa p)} - 529,7 \text{ кДж,}$ $2\text{FeO}_{(\kappa p)} + 1/2O_{2(r)} \rightarrow \text{Fe}_2O_{3(\kappa p)} - 292,5 \text{ кДж.}$

3. Вычислите стандартную энтальпию при 298 К реакции

 ${
m Fe_2O_3}_{(\kappa p)}+2{
m Al}_{(\kappa p)} o {
m Al}_2{
m O}_3$ (корунд) + 2 ${
m Fe}_{(\alpha)}$ по стандартным энтальпиям следующих реакций:

 $Fe_2O_{3 (\kappa p)} + 3H_2(r) \rightarrow 2Fe_{(6)} + 3H_2O_{(ж)} - 35,33 кДж,$ $2A1_{(\kappa p)} + 3/2O_{2(r)} \rightarrow Al_2O_{3 (корувы)} - 1675,69 кДж,$

 $H_{2(r)} + 1/2O_{2(r)} \rightarrow H_2O_{(w)} - 285,83 кДж.$

4. Вычислите стандартную энтальпию при 298 К реакции

FeO $_{\rm (кp)}$ + CO $_{\rm (r)}$ → Fe $_{\rm (α)}$ + CO $_{\rm 2}$ $_{\rm (r)}$ по стандартным энтальпиям следующих реакций:

 $FeO_{(\kappa p)} + H_{2(r)} \rightarrow Fe_{(\alpha)} + H_2O_{(\kappa)} - 20,98 кДж.$

 $CO_{(r)} + 1/2O_{2(r)} \rightarrow CO_{2(r)} - 282,98 кДж,$

 $H_2O_{(*)} \to H_{2(r)} + 1/2O_{2(r)} + 285,83 кДж.$

5. Вычислите стандартную энтальпию образования аммиака при 298 К по стандартным энтальпиям реакций:

 $H_{2(r)}+ 1/2O_{2(r)} \rightarrow H_2O_{(w)}-285,83$ кДж,

 $NH_{3(r)} + 3/4O_{2(r)} \rightarrow 1/2N_{2(r)} + 3/2H_2O_{(w)} - 316,72$ кДж.

6 Определите стандартную энтальпию образования CaCl_{2 (кр)} при 298 К по стандартным энтальпиям следующих реакций:

 $CaO_{(\kappa p)} + 2HCl_{(r)} \rightarrow CaCl_{2(\kappa p)} + H_2O_{(w)} - 262,04 кДж,$

 $Ca_{(a)} + 1/2O_{2(r)} \rightarrow CaO_{(\kappa p)} - 635,09 кДж,$

 $1/2H_{2(r)} + 1/2Cl_{2(r)} \rightarrow HCl_{(r)} - 92,31 кДж,$

 $H_{2(r)} + 1/2O_{2(r)} \rightarrow H_2O_{(w)} - 285,83$ қДж.

7. Разложение Na₂CO_{3(a)} протекает по уравнению

 $Na_2CO_{3(\alpha)} \rightarrow Na_2O_{(xp)} + CO_{2(r)}$.

Вычислите стандартную энтальнию этой реакции при 298 К по стандартным энтальниям следующих реакций:

 $Na_2CO_{3(\alpha)} + SiO_{2(\kappa вари-\alpha)} \rightarrow Na_2SiO_{3(cтекл)} + CO_{2(r)} + 106,59$ кДж,

 $Na_2O_{(\kappa p)} + SiO_{2(\kappa papu-\alpha)} \rightarrow Na_2SiO_{3(cress)} - 212,72 кДж.$

8. Вычислите стандартную энтальпию образования карбида кальция CaC_{2(п)} при 298 К по стандартным энтальпиям следующих реакций:

 $CaC_{2(\alpha)} + H_2O_{(ж)} \rightarrow CaO_{(кр)} + C_2H_{2(r)} - 62,68 кДж,$

 $H_{2(r)} + 1/2O_{2(r)} \rightarrow H_2O_{(ж)} - 285,83$ кДж,

2С _(граф) + $H_{2(r)} \rightarrow C_2H_{2(r)} + 226,75$ кДж,

 $Ca_{(\alpha)} + 1/2O_{2(r)} \rightarrow CaO_{(\kappa p)} - 635,09 кДж.$

9. Вычислите стандартную энтальпию реакции

 ${\rm Fe_3O_4}_{(\kappa p)} + {\rm H_2}_{(r)} \to {\rm 3FeO}_{(\kappa p)} + {\rm H_2O}_{(\kappa)}$ при 298 K, используя стандартные энтальпии реакций:

 $Fe_{(a)} + CO_{2(r)} \rightarrow FeO_{(sp)} + CO_{(r)} + 18,13 \text{ кДж,}$ $CO_{(r)} + 1/2O_{2(r)} \rightarrow CO_{2(r)} - 282,98 \text{ кДж,}$ $Fe_{3}O_{4(sp)} + 4CO_{(r)} \rightarrow 3Fe_{(a)} + 4CO_{2(r)} - 14,79 \text{ кДж,}$ $H_{2(r)} + 1/2O_{2(r)} \rightarrow H_{2}O_{(sc)} - 285,83 \text{ кДж.}$

10. Вычислите стандартную энтальпию реакции

 ${
m Fe_2O_3}_{(\kappa\rho)}+3{
m H_2}_{(r)}\to 2{
m Fe}_{(u)}+3{
m H_2O}_{(w)}$ при 298 К, используя стандартные энтальпии реакций:

 $2Fe_{(a)} + 3CO_{2(r)} \rightarrow Fe_2O_{3(\kappa p)} + 3CO_{(r)} + 26,78 кДж,$

 $CO_{(r)} + 1/2O_{2(r)} \rightarrow CO_{2(r)} - 282,98$ кДж,

 $H_{2(r)} + 1/2O_{2(r)} \rightarrow H_2O_{(\kappa)} - 285,83 кДж.$

11. Вычислите стандартную энтальпию образования Na₂O (кр.) при 298 К по стандартным энтальпиям следующих реакций:

Na $_{(78)}$ + H_2 C $_{(ж)}$ \rightarrow NaOH $_{(a)}$ + $1/2H_2$ $_{(r)}$ – 140,52 кДж,

 $Na_2O_{(\kappa p)} + H_2O_{(\kappa)} \rightarrow 2NaOH_{(\alpha)} - 148,89 \text{ кДж,}$

 $H_{2(r)} + 1/2O_{2(r)} \rightarrow H_2O_{(w)} - 285,83$ кДж.

12. Вычислите стандартную энтальпию образования CaCl_{2 (кр)} при 298 К по стандартным энтальпиям следующих реакций:

 $Ca_{(q)} + 2HCl_{(p-p)} \rightarrow CaCl_{2(p-p)} + H_{2(r)} - 542,66 кДж,$

CaCl_{2 (кр)} → CaCl_{2 (p-p)} - 80,88 кДж,

 $HCl_{(p)} \to HCl_{(p-p)} - 74,71$ кДж,

 $H_{2(r)} + Cl_{2(r)} \rightarrow 2HCl_{(r)} - 184,62$ кДж.

- 13. Вычислить энтальпию растворения ZnSO₄, если известно, что энтальпия гидратообразования ZnSO₄·7 H_2O равна -95,18 хДж/моль, а энтальпия его растворения +17, 68 кДж/моль.
- 14. Вычислить энтальпию гидратообразования MgSO₄·2 H_2 O, если энтальпия его растворения равна -46,19 кДж/моль, а энтальпия растворения безводной соли MgSO₄ равна -84,93 кДж/моль.
- 15. Вычислить энтальпию растворения Na₂SO₃·7 H₂O, если энтальпия гидратообразования этой соли -58,1 кДж/моль, а энтальпия растворения безводной соли Na₂SO₃ равна -11,3 кДж/моль.
- 16 30. Используя справочные данные, вычислите изменение энтальпии и внутренней энергии при стандартных условиях и температуре 298 К для следующих реакций (газы считать идеальными):
 - 16. $3C_{(rpa\phi)} + CaO_{(\kappa p)} \rightarrow CaC_{2(\alpha)} + CO_{(r)}$
 - 17. $\text{Fe}_3\text{O}_{4\,(\text{kp})} + 4\text{H}_{2\,(\text{r})} \rightarrow 3\text{Fe}_{(\alpha)} + 4\text{H}_2\text{O}_{(\pi)}$.
 - 18. $\text{FeO}_{(xp)} + \text{CO}_{(r)} \rightarrow \text{Fe}_{(\alpha)} + \text{CO}_{2(r)}$
 - 19. $Fe_3O_{4(\kappa p)} + 4CO_{(r)} \rightarrow 3Fe_{(\alpha)} + 4CO_{2(r)}$.
 - 20. $Fe_2O_{3(\kappa p)} + 2Al_{(\kappa p)} \rightarrow Al_2O_{3(\kappa opyna)} + 2Fe_{(a)}$.
 - 21/ $\text{Fe}_2\text{O}_{3 \text{ (mp)}} + 3\text{H}_{2 \text{ (r)}} \rightarrow 2\text{Fe}_{(\alpha)} + 3\text{H}_2\text{O}_{(\pi)}.$ 22. $\text{Fe}_2\text{O}_{3 \text{ (mp)}} + 3\text{CO}_{(r)} \rightarrow 2\text{Fe}_{(\alpha)} + 3\text{CO}_{2 \text{ (r)}}.$
 - 23. $C_2H_5OH_{(w)} + CH_3COOH_{(w)} \rightarrow CH_3COOC_2H_{5(w)} + H_2O_{(w)}$
 - 24. $CaC_{2(\alpha)} + 2H_2O_{(w)} \rightarrow Ca(OH)_{2(xp)} + C_2H_{2(r)}$.
 - 25. $MnCO_{3(kp)} \rightarrow MnO_{(kp)} + CO_{2(r)}$.
 - 26. $3H_2O_{(sc)} + P_2O_{5(scp)} \rightarrow 2H_3PO_{4(scp)}$.

27. $Ca_{(a)} + 2HCl_{(p-p)} \rightarrow CaCl_{2(p-p)} + H_{2(r)}$.

28. $HCl_{(r)} \rightarrow HCl_{(p-p)}$.

29. $C_{(rpa\phi)} + O_{2(r)} \rightarrow CO_{2(r)}$.

30. $NH_4Cl_{(\beta)} \rightarrow NH_3(r) + HCl_{(r)}$.

4. Зависимость энтальпии и внутренней энергии химической реакции от температуры

1-40. Вычислите энтальпию ΔH^0_T и изменение внутренней энергии перечисленных ниже реакций при указанной температуре и давлении 1 атм.

№ п/п	Реакция	T, K
1.	$MgSO_{4(\kappa p)} = MgO_{(\kappa p)} + SO_{3'(r)}$	1000
2.	$CaCO_{3 (\kappa p)} = CaO_{(\kappa p)} + CO_{2 (r)}$	500
3.	$PbSO_{4 (\kappa p)} = PbO_{(\kappa pach)} + SO_{3 (r)}$	600
4.	$2H_{2(r)} + CO_{(r)} = CH_3OH_{(r)}$	373
5.	$Na_2SiO_3(\kappa p) + SiO_2(\kappa Bapu-\alpha) = Na_2Si_2O_5(\alpha)$	1500
6.	$1/2N_{2(r)} + 3/2H_{2(r)} = NH_{3(r)}$	800
7.	$FeO_{(np)} + CO_{(n)} = Fe_{(a)} + CO_{2(n)}$	1200
8.	$Cu_{(kp)} + 1/2O_{2(r)} = CuO_{(kp)}$	900
9.	$CO_{(r)} + 3H_{2(r)} = CH_{4(r)} + H_2O_{(r)}$	1000
10.	$2CH_{4(r)} + CO_{2(r)} = CH_3COCH_3 + H_2O_{(r)}$	500
11.	$C_2H_{4(r)} + H_{2(r)} = C_2H_{6(r)}$	1100
12.	$H_2S + 3/2O_{2(r)} = H_2O_{(r)} + SO_{2(r)}$	900
13,	$4NH_{3(r)} + 3O_{2(r)} = 2N_{2(r)} + 6H_2O_{(r)}$	800
14.	$CuS_{(kp)} + O_{2(r)} = Cu_{(kp)} + SO_{2(r)}$	727
15.	$Fe_{(\alpha)} + 1/2O_{2(r)} = FeO_{(\kappa p)}$	800
16.	$C_6H_{6(x)} + 15/2O_{2(r)} = 6CO_{2(r)} + 3H_2O_{(r)}$	500
17.	$C_5H_{12}(r) + 8O_2(r) = 5CO_2(r) + 6H_2O_{(r)}$ пентан	600
18.	$4CO_{(r)} + 2SO_{2(r)} = S_{2(r)} + 4CO_{2(r)}$	700
19.	$2SO_{2(r)} + O_{2(r)} = 2SO_{3(r)}$	1200
20.	$2N_2O_{5(r)} = 2N_2O_{4(r)} + O_{2(r)}$	1000
(21)	$NO_{(r)} + N_2O_{5(r)} = 3NO_{2(r)}$	800
22.	$4NO_{2(r)} = 2N_2O_{4(r)}$	800
23.	$C_2H_{2(r)} + N_{2(r)} = 2HCN_{(r)}$	1000
24.	$C_4H_{10(r)} = C_4H_{8(r)} + H_{2(r)}$	1100
2-	метил-пропан 2-бутен, шис	to the second of the second
25.	$SO_{2(r)} + Cl_{2(r)} = SO_2Cl_{2(x)}$	348
26.	$2CO_{(r)} + O_{2(r)} = 2CO_{2(r)}$	2500
27.	$4HCl_{(r)} + O_{2(r)} = 2H_2O_{(r)} + 2Cl_{2(r)}$	800
28.	$2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$	800
29.	$2SO_{2(r)} + 2C_{(r)} = 2CO_{2(r)} + S_{2(r)}$	1100
30.	$CCl_{4(r)} + 2H_2O_{(r)} = CO_{2(r)} + 4HCl_{(r)}$	900

II. ВТОРОЕ НА ЧАЛО ТЕРМОДИНАМИКИ И ХАРАКТЕРИСТИЧЕСКИЕ ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ

- 1. Направление и предел самопроизвольного протекания процессов при различных условиях. Работа процессов. Характеристические термодинамические функции
- 1. Для каких систем неравенство $\Delta S_{\text{сист}} > 0$ является условием самопроизвольного протекания процесса?
- 2. Как записать математическое выражение второго начала термодинамики для бесконечно малого изменения состояния в обратимых и необратимых процессах в изолированной системе?
- 3. Как изменяется энтропия изолированной системы, в которой обратимо кристаллизуется вещество?
 - 4. Как меняется энтропия вещества при его нагревании?
- 5. Равновесная система состоит из трех частей, каждая из которых обладает определенной энтропией: S_1 , S_2 , S_3 . Как можно выразить энтропию системы в целом?
- 6. В каком соотношении находятся молярные энтропии трех агрегатных состояний одного вещества: газа, жидкости, твердого тела? Что больше?
- 7. В каком из следующих процессов изотермическом, адиабатическом, изохорическом, изобарическом при обратимом их проведении не происходит изменение энтропии изучаемой системы? Изменяется ли в этих процессах суммарная энтропия?
- 8. Сформулируйте общий энтропийный принцип протекания процессов и равновесия их в природе, в том числе самопроизвольных.
- 9. К какому значению стремится энтропия правильно образованного кристалла при приближении температуры к абсолютному нулю?
- 10. Какой термодинамической функцией нужно воспользоваться для выяснения направления и предела самопроизвольного протекания процесса в закрытом автоклаве при T = const?
- 11. Процесс протекает при T,P = const. Какой термодинамический потенциал следует выбрать в качестве критерия самопроизвольного протекания этого процесса? Как изменяется эта функция в данном процессе?
- 12. При обратимом изотермическом сжатии некоторого количества газа в идеальном состоянии от давления P_1 до давления P_2 функция Гиббса G изменилась на 200 Дж. Каково по сравнению с этой величиной будет изменение функции Гиббса при подобном же, но необратимом переходе от P_1 до P_2 ?
- 13. При постоянстве каких термодинамических параметров изменение энтальпии может служить критерием направленности самопроизвольного процесса? Каков этот критерий?
- 14. Какие условия необходимо соблюдать, чтобы максимальная полезная работа в процессе совершалась за счет убыли функции Гиббса?

15. Чему равна максимальная полезная работа изохорно-изотермического процесса?

2. Вычисление энтропии (изменения энтропии) различных процессов

- 1. В каком из четырех обратимых процессов с 1 моль идеального газа изменение энтропии будет наибольшим:
 - а) при изобарическом нагревании от 300 до 400 К,
 - б) при изохорическом нагревании от 300 до 400 К,
 - в) при изотермическом расширении от 300 до 400 м³,
 - г) при адиабатическом расширении от 300 до 400 м³?
- 2. Рассчитать изменение энтропии при изотермическом сжатии 14 г CO в идеально-газовом состоянии от 10^5 до 10^6 Па при 1000 К.
- 3. В результате расширения 20 кг гелия при 298 К объем газа увеличился в 1000 раз. Рассчитать изменение энтропии.
- 4. Рассчитать изменение энтропии для стократного обратимого расширения 1 моль идеального газа при T= const. Как изменится величина ΔS , если расширение провести необратимо?
- 5. При изобарическом нагревании 6 моль одноатомного идеального газа температура повысилась от T_1 до T_2 . при изохорическом нагревании температура также повысилась от T_1 до T_2 . В каком процессе изменение энтропии больше?
- (6. Вычислить изменение энтропии при нагревании 16 кг O_2 от 273 до 373 К: а) при V = const; б) при P = const. Считать кислород идеальным газом.
- 7. 14 кг N_2 при 273 К нагревают при V = const до 373 К. Вычислить изменение энтропии, считая газ идеальным. Теплоемкость азота $c_v^0 = 19.56 + 4.27 \cdot 10^{-3} T \, D \text{к/моль·К}$.
- 8. Рассчитать изменение энтропии при нагревании 58,82 кг B_2O_3 от 298 до 700 К, теплоемкость B_2O_3 $c_p{}^0=36,55+106,35\cdot10^{-3}T$ Дж/моль·К.
- 9. Рассчитать изменение энтропии при нагревании 8 кг метана от 300 до 500 К, теплоемкость $c_v^0 = 17,45 + 60,46 \cdot 10^{-3} T$ Дж/моль·К.
- 10. Определить изменение энтропии при нагревании 0,0112 м 3 N $_2$ от 273 до 323 K, при этом давление уменьшается от 1,0133·10 5 Па до 1,0133·10 3 Па. Теплоемкость азота $c_p{}^0$ = 29,1 Дж/моль·К.
- 11. Чему равно $\Delta S^0_{\text{исп}}$ бензола при температуре кипения 80°С, если $\Delta H^0_{\text{исп}} = 34,3$ кДж/моль?
- 12. Вычислить изменение энтропии в процессе перехода 1 кмоль FeS из α в β -модификацию при 411 К. Теплоты образования FeS $_{\alpha}$ и FeS $_{\beta}$ соответственно равны -95,4 и -91,0 кДж/моль.
- 13. При давлении 1,0133·10⁵ Па ацетон кипит при 56,5°С. Вычислить изменение энтропии при испарении 58 г ацетона. Теплоты образования ацетона в жидком и газообразном состояниях соответственно равны 247,7 и 216,4 кДж/моль.

14. Бромбензол кипит при 429,8 К, его теплота парообразования при этой температуре 241,9 10³ Дж/кг. Рассчитать изменение энтропии при испарении 10 г бромбензола.

15. Рассчитать изменение энтропии при смещении 9 м³ водорода и 1 м³ окиси

углерода при 300 К и давлении 1,0133·10⁵ Па.

3. Вычисление изменения характеристических функций (термодинамических потенциалов) различных процессов

1-8. Вычислить ΔG^0_{1000} и ΔA^0_{1000} для следующих реакций (ΔC_p^{0} считать постоянной):

Вещество	$\Delta H^{0}_{298,5}$, кДж/моль	S ⁰ 298, кДж/моль	$c^0_{p,298}$, кДж/моль
CO ₂	-393.51	213.6	37.13
CO	-110.5	197.4	29.15
O ₂	0	205.03	29.36
2. CO + H ₂ C	$O_{(r)} = CO_2 + H_2$		
Вещество	ΔH ⁰ _{298,6} , кДж/моль	5°298, КДж/моль	с ⁰ _{p,298} , кДж/моль
CO ₂	-393.51	213.6	37.13
$H_2O_{(r)}$	-241.8	188.7	33.56
CO	-110.5	197.4	29.15
H ₂	0	130.6	28.83
3. 2HI(r) = H	2 + I _{2(r)}		
Вещество	ΔH ⁰ _{298,f} , кДж/моль	S ⁰ 298, кДж/моль	с ⁰ _{p,298} , кДж/молы
HI _(r)	25.94	206.3	29.16
H ₂	0	130.6	28.83
I_2	62.24	260.6	36.9
4. CO + 2H ₂	$= CH_3OH_{(xc)}$		
Вещество	ΔH ⁰ _{298,f9} кДж/моль	S^0_{298} , кДж/моль	$c^{\theta}_{p,298}$, кДж/молн
CO	-110.5	197.4	29.15
H ₂	0	130.6	28.83
CH ₃ OH _(*)	-238.7	126.7	81.6
5. $3H_2 + N_2 =$			Filmely Tul Tille
Вещество	ΔH ⁰ _{298,6} кДж/моль	S ⁰ 298, кДж/моль	$c^0_{p,298}$, кДж/молн
NH _{3 (r)}	-46.19	192.5	35.65
N ₂	0	191.5	29.1
H ₂	0	130.6	28.83
6. 1/2 H ₂ + 1	$/2 \operatorname{Cl}_2 = \operatorname{HCl}_{(r)}$	isitur e advaració	THE CHARLES AND ADDRESS OF THE PARTY OF THE
Вещество	ΔH ⁰ _{298,f} , кДж/моль	S ⁰ 298, кДж/моль	с ⁰ _{p,298} , к/Іж/молн
HCl (r)	-92.3	186.7	26.16
Cl ₂	العالمة في المحتملة	223.0	33.84
H ₂	0	130.6	28.83

7. $1/2 N_2 + 3/2 H_2 = NH_{3(r)}$

C2H2

Вещество	$\Delta H^{0}_{298,f}$, кДж/моль	S ⁰ 298, кДж/моль	$c^0_{\rho,298}$, кДж/моль		
NH _{3 (r)}	-46.19	192.5	35.65		
N ₂	0	191.5	29.1		
H_2	0	130.6	28.83		
8. $C_2H_2 + 2H_2O_{(r)} = CH_3COOH_{(w)} + H_2$					
Вещество	$\Delta H^0_{298,f}$, кДж/моль	S ⁰ 298, кДж/моль	c",298, кДж/моль		
H ₂	0	130.6	28.83		
CH ₃ COOH _(w)	-484.9	159.8	123.4		
H ₂ O _(r)	-241.8	188.7	33.56		
		ACCURATION OF THE PARTY OF THE			

200.8

- 9-13. Вычислить ΔG_{298} и ΔA_{298}^0 для реакций:
- $9.2CO_2 = 2CO + O_2$ (данные взять из задачи 1).
- 10. CO + $H_2O_{10} = CO_2 + H_2$ (данные взять из задачи 2).
- $11. 2HI_{(r)} = H_2 + I_{2(r)}$ (данные взять из задачи 3).
- 12. CO + 2H₂ = CH₃OH (ж) (данные взять из задачи 4).
- 13. $3H_2 + N_2 = 2NH_{3(r)}$ (данные взять из задачи 5).
- 14. Вычислить ΔG и ΔA для процесса сжатия 3 кг азота в идеально-газовом состоянии при 273 К от 101,33 кПа до 1012,3 кПа.
- 15. Вычислите ΔG при сжатии 1 кмоль водорода от 10 м³ де 1 м³ при 1000 К.

III. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

1. Константа химического равновесия для идеально-газовых реакций

Напишите выражение константы химического равновесия для идеальногазовой реакции:

- 1. $2C_2H_6 + 7O_2 = 4CO_2 + 6H_2O$.
- $2.2CO + O_2 = 2CO_2$.
- $3.2C_4H_{10} + 13O_2 = 8CO_2 + 10 H_2O.$
- $4.4NH_3 + 3O_2 = 2N_2 + 6H_2O.$
- 5. $HCHO + 1/2O_2 = CO + H_2O$.
- $6.C_1H_8 + 5O_2 = 3CO_2 + 4H_2O.$
- 7. $CH_4 + 2H_2O = CO_2 + 4H_2$.
- 8. $4HC1 + O_2 = 2C1_2 + 2H_2O$.
- 9. $CH_3CHO + 5/2O_2 = 2CO_2 + 2H_2O$.
- 10. $CO + H_2O = CO_2 + H_2$.

11. $C_5H_{12} + 8O_2 = 5CO_2 + 6 H_2O$. 12. $C_6H_6 + 15/2 O_2 = 6CO_2 + 3 H_2O$. 13. $C_2H_5OH + 3O_2 = 2CO_2 + 3 H_2O$. 14. $C_3H_6O + 4O_2 = 3CO_2 + 3 H_2O$. 15 $CH_3OCH_3 + 3O_2 = 2CO_2 + 3 H_2O$.

2. Расчет состава равновесной смеси и выхода продукта в идеально-газовых реакциях

1. Вычислить выход этанола в реакции

$$C_2H_4 + H_2O = C_2H_5OH$$
,

если процесс проводить при T=298 K и общем давлении $P=1,01325\cdot 10^6$ Па. В исходном состоянии находятся 1 моль воды и 0,2 моля этилена.

2. Вычислить количество цис-дихлорэтилена в равновесной смеси

транс- пис-

при T = 298 К и $P = 1,01325 \cdot 10^5$ Па, если в исходном состоянии присутствовал только транс-дихлорэтилен в количестве 1 моль.

3. Вычислить выход сульфурилхлорида по реакции

$$SO_2 + Cl_2 = SO_2Cl_2$$

протекающей при 298 К и общем давлении $P = 1.01325 \cdot 10^3$, если в исходном состоянии $n_{SO}^0 = 1$ моль, $n_{CL}^0 = 1$ моль.

4. Вычислить равновесный состав реакции

$$C_2H_4 + H_2 = C_2H_6$$

протекающей при T=873 К и общем давлении $P=1,01325\cdot 10^4$ Па. Реагирующие вещества взяты в стехиометрических количествах, $\Delta G^0_{873}=-25,05$ кДж.

5. Вычислить состав равновесной смеси в реакции

$$2NO_2 = N_2O_4$$

протекающей при $T=298~{\rm K}$ и $P=2,0265\cdot 10^5~{\rm Па}$, если реагирующие вещества взяты в стехиометрических количествах.

6. Определить теоретический выход йодистого водорода по реакции

$$H_2 + I_2 = 2HI$$
,

если процесс проводить при T=298 К и общем давлении $P=101,325\cdot10^5$ Па. В исходном состоянии $n_{\rm H_2}^0=1$ моль.

7. Вычислить состав равновесной смеси в реакции

$$C_2H_4 + H_2O = C_2H_5OH$$

при T=298 К и общем давлении $P=1,01325\cdot 10^5$ Па, если в исходном состоянии $n_{\text{C,H.}}^0=0,2$ моля, $n_{\text{H,O}}^0=1$ моль.

8. Вычислить состав равновесной смеси в реакции

$$2NO_2 = N_2O_4,$$

протекающей в реакторе объемом 0.05 м^3 при T=298 K, если участники реакции взяты в стехнометрических количествах.

9. Вычислить состав равновесной смеси в реакции

 $CO + H_2O = CO_2 + H_2$

протекающей при $T=298~{\rm K}$ и общем давлении $P=1,01325\cdot 10^5~{\rm Ha}$, если в исходном состоянии все участники реакции взяты в стехнометрических количествах.

10. Вычислить выход сульфурилхлорида по реакции

$$SO_2 + Cl_2 = SO_2Cl_2$$

протекающей при T=298 К и общем давлении $P=1,01325\cdot 10^6$ Па, если в исходном состоянии $n_{50}^0=1$ моль, $n_{Cl_0}^0=1$ моль.

11. Вычислить равновесную концентрацию сульфурилхлорида в реакции

$$SO_2 + Cl_2 = SO_2Cl_2$$

протекающей при $T=298~{\rm K}$ в реакторе объемом 0,01 м³, если в исходном состоянин $n_{\rm so}^{\rm o}=1$ моль, $n_{\rm ct}^{\rm o}=1$ моль.

12. Вычислить состав равновесной смеси в реакции

$$2NO_2 = N_2O_4$$

протекающей в реакторе объемом 0,015 м³ при T =298 K, если в исходном состоянии $n_{\text{NO.}}^0$ = 2 моля, $n_{\text{NO.}}^0$ = 1 моль.

13. Вычислить состав равновесной смеси в реакции

$$C_2H_4 + H_2 = C_2H_6$$

протекающей при $T=873~{\rm K}$ в реакторе объемом 0,05 м³, если все участники реакции взяты в стехиометрических количествах, $\Delta G^0_{873} = -25,05~{\rm k}$ Дж.

14. Вычислить состав равновесной смеси в реакции

$$C_4H_8=C_4H_8,$$

бутен-1 транс-бутен-2

протекающей при T = 298 К и $P = 1,01325 \cdot 10^{\circ}$ Па, если в исходном состоянии содержится 1 моль бутена-1 и 0,5 моля транс-бутена-2.

15. Вычислить состав равновесной смеси в реакции

$$C_4H_8 = C_4H_8$$
,

бутен-1 транс-бутен-2

протекающей при T = 500 К в реакторе объемом 0,005 м³, если в исходном состоянии содержится 0,8 моля бутена-1 и 0,2 моля транс-бутена-2.

3. Вычисление константы равновесия идеально-газовой реакции при данной температуре по стандартным термодинамическим величинам

Вычислить константу равновесия химической реакции при указанной температуре, воспользовавшись таблицами стандартных термодинамических величин (см. приложение).

1. HBr = $1/2H_2+1/2Br_2$, T = 1100 K.

2. $CO_2 + 4H_2 = CH_4 + 2H_2O$, T = 675 K.

3. $HCI = 1/2 Cl_2 + 1/2 H_2$, T = 1000 K.

4. $N_2 + 1/2 O_2 = N_2 O$, T = 1500 K.

5. $1/2N_2 + 1/2O_2 = NO$, T = 1400 K.

6. $4HCl +O_2 = 2H_2O + 2Cl_2$, T = 703 K.

7. $CO + 3H_2 = CH_4 + H_2O$, T = 700 K.

8. $H_2S = H_2 + 1/2 S_2$, T = 1000 K.

9. $H_2 + CO_2 = CO + H_2O$, T = 800 K.

10. $H_2O = H_2 + 1/2O_2$, T = 1600 K.

11. $2CO_2 = 2CO + O_2$, T = 2000 K.

12. $SO_2 = O_2 + 1/2 S_2$, T = 800 K.

13. $4HCl +O_2 = 2H_2O + 2Cl_2$, T = 923 K.

14. $C_2H_6 = C_2H_4 + H_2$, T = 800 K.

15. $3/2 H_2 + 1/2 N_2 = NH_3$, T = 800 K.

4. Влияние различных факторов на положение равновесия (принцип Ле-Шателье)

1. Какое влияние на теоретический выход меди в реакции $CH_4 + 4CuO_{\text{(тв)}} = CO_2 + 2H_2O + 4Cu_{\text{(тв)}}$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T,V = const,
- в) увеличение температуры при P = const?
- 2. Какое влияние на полноту сгорания бутана в реакции 2C₄H₁₀+13O₂=8CO₂+10H₂O₃

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при $T,V=\mathrm{const},$
- в) увеличение температуры при P = const?
 - 3. Какое влияние на полноту сгорания метана в реакции $CH_4 + 2O_2 = CO_2 + 2H_2O_{(sc)}$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T,V= const,
- в) увеличение температуры при P = const?
 - 4. Какое влияние на полноту сгорания муравъиной кислоты в реакции $HCOOH_{(*)} + 1/2O_2 = CO_2 + H_2O_{(*)}$

окажет.

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T, V = const,
- в) увеличение температуры при P = const?
- Какое влияние на полноту сгорания метилового спирта в реакции СН₃ОН (ж) + 3/2O₂ = CO₂ + H₂O (ж)

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T,V = const,
- в) увеличение температуры при P = const?

6, Какое влияние на теоретический выход мочевины в реакции $CO_2 + 2NH_3 = CH_4ON_{2 \text{ (rs)}} + H_2O_{\text{ (r)}}$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T, V = const,
- в) увеличение температуры при P = const?
 - 7. Какое влияние на полноту сгорания уксусного альдегида в реакции $CH_3CHO_{(r)} + 5/2O_2 = 2CO_2 + 2H_2O_{(m)}$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при $T={
 m const},$
- 6) увеличение давления при T,V= const,
 - 8. Какое влияние на полноту сгорания уксусной кислоты в реакции $CH_3COOH_{(*)} + 2O_2 = 2CO_2 + 2H_2O_{(*)}$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T, V = const,
- в) увеличение температуры при P = const?
 - 9. Какое влияние на теоретический выход азота в реакции $3O_2 + 4NH_{3\,(r)} = 2N_2 + 6H_2O_{(r)}$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при $T,V=\mathrm{const},$
- в) увеличение температуры при P = const?
- 10. Какое влияние на полноту сгорания диметилового эфира в реакции CH_3OCH_3 (**) $+3O_2 = 2CO_2 + 3H_2O_4$ (**)

окажет:

- а) увеличение объема реактора, в котором протекает реакция при $T={
 m const},$
- б) увеличение давления при T,V = const,
- в) увеличение температуры при P = const?
- 11. Какое влияние на полноту сгорания этиленгликоля в реакции $C_2H_6O_2$ (ж) + $5/2O_2 = 2CO_2 + 3H_2O$ (ж)

окажет:

- а) увеличение объема реактора, в котором протекает реакция при $T={
 m const},$
- б) увеличение давления при T,V= const,
- в) увеличение температуры при P = const?
 - 12. Какое влияние на теоретический выход водорода в реакции $CH_4 + 2H_2O_{(r)} = CO_2 + 4H_2$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T,V= const,
- в) увеличение температуры при P = const?

13. Какое влияние на полноту сгорания ацетона в реакции $C_3H_6O_{(w)}+4O_2=3CO_2+3H_2O_{(w)}$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T, V = const,
- в) увеличение температуры при P = const?
- 14. Какое влияние на полноту сгорания н-пропанола в реакции

$$C_3H_7OH_{(w)} + 9/2O_2 = 3CO_2 + 4H_2O_{(w)}$$

окажет:

- а) увеличение объема реактора, в котором протеквет реакция при T = const,
- б) увеличение давления при T,V = const,
- в) увеличение температуры при P = const?
- 15. Какое влияние на теоретический выход аммиака в реакции

$$3/2 H_2 + 1/2 N_2 = NH_{3(r)}$$

окажет:

- а) увеличение объема реактора, в котором протекает реакция при T = const,
- б) увеличение давления при T,V = const,
- в) увеличение температуры при P = const?

примеры решения задач

Пример 1. 2,8 г азота при давлении 1,013·10⁵ Па занимали объем 0,01 м³. После сжатия азота до давления 3,039·10⁵ Па его объем стал равен 0,004 м³. Переход из начального состояния в конечное был проведен сначала по изобаре, а затем — по изохоре. Вычислите работу, количество теплоты, изменение внутренней энергии и изменение энтальпии в этом процессе. Азот считать идеальным газом.

Решение. По условию задачи система из начального состояния (P_1, V_1) переходит в конечное (P_3, V_3) через промежуточную точку с параметрами P_1, V_3 :

•1
$$(P_1, V_1)$$
 P_1 =const •2 (P_1, V_3) V_3 = const •3 (P_3, V_3)

1. Суммарная работа равна сумме работ изобарного и изохорного процессов:

$$\delta W = \delta W_{\rho} + \delta W_{\nu},$$
 $W = W_{\rho} + W_{\nu},$
 $W_{\rho} = P_{1}(V_{3} - V_{1}),$
 $W_{\rho} = 1,013 \cdot 10^{5} (0.004 - 0.01) = -608 \,\text{Дж},$
 $W_{\nu} = 0,$
 $W = W_{\rho} = -608 \,\text{Дж}.$

При сжатии газа над системой совершается работа W < 0.

Суммарное количество теплоты равно сумме теплот изобарного и изохорного процессов:

$$\delta Q = \delta Q_p + \delta Q_{\nu},$$

$$Q=Q_p+Q_v,$$
 $\delta Q_p=nc_p dT$, при $c_p={
m const}$ $Q_p=nc_p (T_2-T_1)$, где $c_p=rac{7}{2}R$, $n=rac{2.8}{28}=0.1$ моль N_2 .

Температуру промежуточной точки 2 (T_2) и начальную температуру (T_1) находим из уравнения Менделеева-Клапейрона:

$$T_1 = \frac{P_1 V_1}{nR} = \frac{1,013 \cdot 10^5 \cdot 0,01}{0,1 \cdot 8,314} = 1218 \text{ K},$$

$$T_2 = \frac{P_1 V_3}{nR} = \frac{1,013 \cdot 10^5 \cdot 0,004}{0,1 \cdot 8,314} = 487 \text{ K}.$$

$$Q_p = 0.1 \cdot \frac{7}{2} \cdot 8.314 \cdot (487 - 1218) = -2127 \text{ Дж}.$$

Тогда

 $\delta Q_v = nc_v dT$, при $c_v = {\rm const} \ \ Q_v = nc_v (T_3 - T_2)$, где $c_v = \frac{5}{2} R$,

$$T_3 = \frac{P_3 V_3}{nR} = \frac{3,039 \cdot 10^5 \cdot 0,004}{0,1 \cdot 8,314} = 1462 \text{ K}.$$

Тогла

$$Q_v = 0.1 \cdot \frac{5}{2} \cdot 8.314 \cdot (1462 - 487) = 2026 \, \text{Дж}.$$

Q = -2127 + 2026 = -101Дж.

При сжатяи газа система выделяет теплоту в окружающую среду, процесс экзотермический, Q < 0.

3. Внутренняя энергия — функция состояния, ее изменение в процессе определяется значениями параметров в конечном (точка 3) и начальном (точка 1) состояниях:

$$dU = nc_v dT$$
, при $c_v = \text{const}$ $\Delta U = nc_v (T_3 - T_1)$, $\Delta U = 0.1 \cdot \frac{5}{2} \cdot 8.314 \cdot (1462 - 1218) = 507$ Дж.

Покажем, что действительно изменение внутренней энергии системы не зависит от пути процесса. Найдем ΔU при ступенчатом протекании процесса через точку 2:

$$\Delta U = \Delta U_{\rho} + \Delta U_{\nu}.$$

В соответствии с первым началом термодинамики

$$\Delta U_p = Q_p - W_p = -2127 - 608 = -1519$$
 Дж,
 $\Delta U_v = Q_v = 2026$ Дж,
 $\Delta U = 2026 - 1519 = 507$ Дж.

4. Энтальпия – функция состояния, ее изменение определяется значениями параметров в конечном и начальном состояниях:

$$dH = nc_p dT$$
, при $c_p = \text{const}$ $\Delta H = nc_p (T_3 - T_1)$, $\Delta H = 0, 1 \cdot \frac{7}{2} \cdot 8,314 \cdot (1462 - 1218) = 710$ Дж.

При ступенчатом протекании процесса через точку 2:

$$\Delta H = \Delta H_p + \Delta H_v$$
.
 $\Delta H_p = Q_p = -2127$ Дж,