КОНТРОЛЬНАЯ РАБОТА №1

1. Решить систему линейных уравнений методом Гаусса.

1.4.
$$\begin{cases} 3x + 4y - 5z = -8, \\ 2x + y + 4z = 20, \\ 2x - y - 3z = 3. \end{cases}$$

- **2. 4.** Определить тип кривой $x^2 + y^2 = 9$, найти ее параметры; определить угловой коэффициент прямой x + y 3 = 0 . Найти точки пересечения данных линий и сделать чертеж.
- **3.4.** Даны координаты вершин пирамиды *АВСD*: A(2;3;0), B(0;6;0), C(0;3;6), D(2;6;8). Требуется:
- 1) записать векторы \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} в системе орт \vec{i} , \vec{j} , \vec{k} и найти модули этих векторов;
- 2) найти угол между векторами $\begin{cal} \overrightarrow{AB}\end{cal}$ и $\begin{cal} \overrightarrow{AC}\end{cal}$;
- 3) найти проекцию вектора \overrightarrow{AD} на вектор \overrightarrow{AB} ;
- 4) найти площадь грани АВС;
- 5) найти объем пирамиды АВСО;
- 6) составить уравнение ребра АС;
- 7) составить уравнение грани АВС.
- **4.4.** Провести полное исследование функции $y = \frac{x^2 8}{x 3}$ методами дифференциального исчисления и построить ее график.
- **5.4.** Решить систему двух линейных уравнений в области комплексных чисел по формулам Крамера. Найденные z_1, z_2 изобразить на комплексной плоскости; в виде векторов и записать в показательной и тригонометрической формах.

$$\begin{cases} (-2+j)z_1 - 3z_2 = 3+j2; \\ (-1+j)z_1 + (-2+j)z_2 = 2+j. \end{cases}$$

- **6.4. а)** Вычислить площадь фигуры, расположенной в первом квадранте и ограниченной параболой $y=\frac{1}{4}x^2$, прямой y=-x+3 и осью *Ox*.
 - **б)** Найти объем тела, образованного вращением этой фигуры вокруг оси *Ох.*