Индивидуальное задание по теме: "Химическая термодинамика".

Вариант 14

Задача 1. Рассчитать изобарную теплоемкость вещества $PbSO_4$ при температуре $T = 830 \ K$ и $P = 1,013 \ 10^5 \ \Pi a$.

Задача 2. Какое количество теплоты необходимо татратить, чтобы изобарно нагреть 1.6 кг Na_2SiO_1 от 25 до 1200°C, если температура плавления этой соли 1088°C и молярная теплота плавления $\Lambda H_{ns} = 51.80 \, \text{кДж/моль}$. Зависимости истинной молярной теплоемкости от температуры для твердого и жидкого состояния, выраженные урввнениями вида: $Cp = a + BT + c^2/T^2$ взять из справочника.

Задача 3. Рассчитать изменение энтропии при нагревании 1,3 моль вещества BF3 от температуры T_1 = 135 K до T_2 = 195 K при P=1,013 10^5 Па, если известны: T_{na} = 145 K, T_{nah} = 172 K, молярная теплота плавления ΔH_{nah} = 4,2 кДж/моль и молярная теплота испарения ΔH_{neh} = 18,0 кДж/моль. Зависимость теплоемкости от температуры для газообразного состояния Cp = a + bT + c^*/T^2 взять из справочника, Cp_{na} = 7,31 Дж/моль K, Cp_{na} = 21,93 Дж/моль K.

Задача 4. Воспользовавшиеь еправочными таблицами стандартных термодинамических величин, определите направление процесса в стандартных условиях при температуре Т=973 К для химической реакции:

 $Fe_2O_{3(r)} + H_{2(r)} = 2FeO_{(r)} + H_2O_{(r)}$

Рассчитайте константу химического равновесия.

Задача 5. Вычислить константу равновесия Кс, Кр и определить направление реакции в стандартных условиях при T=650K: $2NO_{2(r)}=2NO_{(r)}+O_{2(r)}$, если из исходного 1 моля NO_2 — к моменту равновесия разлагается 0,5 моль.

Задача 6. Для химической реакции $C_{(\tau)} + CO_{2(\tau)} = 2CO_{(\tau)}$ зависимость константы равновесия от температуры выражена уравнением: $1g \ Kp = -8750/T + 2,475 \ IgT - 1,083 \ 10^3 T + 2,67$

Получите уравнения температурной зависимости: для теплового эффекта реакции, изменения свободной энергии Гиббса, энтропии и теплосмкости процесса. Рассчитайте значение константы рапновесия и термодинамических функций при 960 К.

Залача 7. Константа равновесия приведенной химической реакции: $SO_{2(r)} + Cl_{2(r)} = SO_2Cl_{2(r)}$, при T = 402 K равна $Kp = 4,1 \ 10^4$. Вычислить Kc. Будет ли происходить образование продуктов реакции при идеально обратимом процессс, если исходные парциальные давления веществ в Па равны: $P^{0}_{SO2} = 1,01 \ 10^5$; $P^{0}_{Cl2} = 1,01 \ 10^5$; $P^{0}_{SO2Cl2} = 0,04 \ 10^5$?